
Stephen Checkoway

Programming Abstractions
Lecture 11: Y Combinator; or: how to write a recursive,

anonymous function

How do we write a recursive function?

Easy, use define

(define len  
 (λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 (len (rest lst)))])))

For the rest of this lecture, we're not going to use (define (fun args) …)

How do we write a recursive function?
(without using define)

Easy, use letrec

(letrec ([len  
 (λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 (len (rest lst)))]))])  
 len)

Recall, this binds len to our function (λ (lst) …) in the body of the letrec

This expression returns the procedure bound to len which computes the length

of its argument

Why does this not work to create a length procedure? (Note let rather than

letrec.)

(let ([len  
 (λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 (len (rest lst)))]))]) 
 len)

A. It would work but letrec more

clearly conveys the

programmer's intent to write a

recursive procedure

B. len is not defined inside the λ

C. len is not defined in the last line

D. len isn't being called in the last

line, it's being returned and this

is an error

E. None of the above

4

How do we write a recursive function?
(just using anonymous functions created via λs)

Less easy, but let's give it a go!

(λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 (??? (rest lst)))]))

We need to put something in the recursive case in place of the ??? but what?

If we replace the ??? with 

(λ (lst) (error "List too long!"))  
we'll get a function that correctly computes the length of empty lists, but fails

with nonempty lists

Put the function itself there?

(λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 ((λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 (??? (rest lst)))]))  
 (rest lst)))]))

Not a terrible attempt, we still have ???, but now we can compute lengths of the

empty list and a single element list (if we replace the ??? with the error message

again)

Maybe we can abstract out the function

(λ (len)  
 (λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 (len (rest lst)))])))

This isn't a function that operates on lists!

It's a function that takes a function len as a parameter and returns a closure

that takes a list lst as a parameter and computes a sort of length function

using the passed in len function

make-length

(define make-length  
 (λ (len)  
 (λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 (len (rest lst)))]))))

This is the same function as before but bound to the identifier make-length

‣ The orange text (together with purple text) is the body of make-length

‣ The purple text is the body of the closure returned by (make-length len)

(define L0 (make-length (λ (lst) (error "too long"))))

‣ L0 correctly computes the length of the empty list but fails on longer lists

make-length

(define make-length

 (λ (len)

 (λ (lst)

 (cond [(empty? lst) 0]

 [else (add1 (len (rest lst)))]))))

(define L0 (make-length (λ (lst) (error "too long"))))

(define L1 (make-length L0))

(define L2 (make-length L1))

(define L3 (make-length L2))

‣ Ln correctly computes the length of lists of size at most n

‣ We need an L∞ in order to work for all lists

‣ (make-length length) would work correctly, but that's cheating!

Enter the Y combinator

Y is a "fixed-point combinator"

‣ A combinator is a function that operates on functions (more or less)

If f is a function of one argument, then (Y f) = (f (Y f))

(Y make-length)  
=> (make-length (Y make-length))  
=> (λ (lst)  
 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

This is precisely the length function: (define length (Y make-length))

We substituted (Y make-length) for len

rather than evaluate (Y make-length)

We'll have to deal with this soon

How is (Y make-length) the same as length?
(define length (Y make-length))

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

=> (add1 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

=> (add1 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3)))) ; lst is bound to '(3)

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

=> (add1 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3)))) ; lst is bound to '(3)

=> (add1 (add1 (cond […][else (add1 …)])))

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

=> (add1 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3)))) ; lst is bound to '(3)

=> (add1 (add1 (cond […][else (add1 …)])))

=> (add1 (add1 (add1 (length '())))) ; lst is bound to '()

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

=> (add1 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3)))) ; lst is bound to '(3)

=> (add1 (add1 (cond […][else (add1 …)])))

=> (add1 (add1 (add1 (length '())))) ; lst is bound to '()

=> (add1 (add1 (add1 (cond [(empty? lst) 0][…]))))

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

=> (add1 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3)))) ; lst is bound to '(3)

=> (add1 (add1 (cond […][else (add1 …)])))

=> (add1 (add1 (add1 (length '())))) ; lst is bound to '()

=> (add1 (add1 (add1 (cond [(empty? lst) 0][…]))))

=> (add1 (add1 (add1 0)))

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

=> (add1 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3)))) ; lst is bound to '(3)

=> (add1 (add1 (cond […][else (add1 …)])))

=> (add1 (add1 (add1 (length '())))) ; lst is bound to '()

=> (add1 (add1 (add1 (cond [(empty? lst) 0][…]))))

=> (add1 (add1 (add1 0)))

=> 3

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) ; lst is bound to '(2 3)

=> (add1 (cond [(empty? lst) 0]  
 [else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3)))) ; lst is bound to '(3)

=> (add1 (add1 (cond […][else (add1 …)])))

=> (add1 (add1 (add1 (length '())))) ; lst is bound to '()

=> (add1 (add1 (add1 (cond [(empty? lst) 0][…]))))

=> (add1 (add1 (add1 0)))

=> 3

Example: sum

(define sum

 (λ (lst)

 (cond [(empty? lst) 0]

 [else (+ (first lst) (sum (rest lst)))])))

(define sum-2

 (Y (λ (recsum)

 (λ (lst)

 (cond [(empty? lst) 0]

 [else (+ (first lst) (recsum (rest lst)))])))))

These are both sum functions but sum-2 uses Y

But wait, how can that work?

Two problems:

‣ We defined Y in terms of Y! It's recursive and the whole point was to write

recursive anonymous functions

‣ (Y f) = (f (Y f)) but then 

(f (Y f)) = (f (f (Y f)) = (f (f (f (Y f)))) = …  
and this will never end

(define Y

 (λ (f)

 (f (Y f))))

(define bad

 (Y (λ (loop)

 (λ (x)

 (loop x)))))

Y is defined such that

(Y f) = (f (Y f))

What does bad do?

A. bad is an infinite loop that is equivalent to 

(define (bad x) (bad x))

B. bad is never defined because (Y (λ (loop) …)) causes an infinite loop

C. bad is the identity function: (bad x) = x

14

Defining Y

(define Y  
 (λ (f)  
 ((λ (g) (f (g g)))  
 (λ (g) (f (g g))))))

It's tricky to see what's going on but Y is a function of f and its body is applying the

anonymous function (λ (g) (f (g g))) to the argument  

(λ (g) (f (g g))) and returning the result.

(Y foo) = ((λ (g) (foo (g g))) ; By applying Y to foo 
 (λ (g) (foo (g g))))  
 = (foo ((λ (g) (foo (g g))) ; By applying orange fun 
 (λ (g) (foo (g g))))) ; to purple argument  
 = (foo (Y foo)) ; From definition of Y

Never ending computation

This form of the Y-combinator doesn't work in Scheme because the

computation would never end

We can fix this by using the related Z-combinator

(define Z  
 (λ (f)  
 ((λ (g) (f (λ (v) ((g g) v))))  
 (λ (g) (f (λ (v) ((g g) v)))))))

With this definition, we can create a length function 

(define length (Z make-length))

This is the argument to our recursive function

What is length actually defined as here?

(define Z

 (λ (f)

 ((λ (g) (f (λ (v) ((g g) v))))

 (λ (g) (f (λ (v) ((g g) v)))))))

(define length (Z make-length))

(Z make-length)  
=> ((λ (g) (make-length (λ (v) ((g g) v))))  
 (λ (g) (make-length (λ (v) ((g g) v)))))  
=> (make-length (λ (v) (((λ (g) (make-length (λ (v) ((g g) v))))  
 (λ (g) (make-length (λ (v) ((g g) v)))))  
 v)))  

Let's apply some equivalences

(make-length (λ (v) (((λ (g) (make-length (λ (v) ((g g) v))))  
 (λ (g) (make-length (λ (v) ((g g) v)))))  
 v)))

=> (make-length (λ (v) ((Z make-length) v)))

=> (cond [(empty? lst) 0]  
 [else (add1 ((λ (v) ((Z make-length) v)) 
 (rest lst))]

=> (cond [(empty? lst) 0]  
 [else (add1 ((λ (v) (length v))  
 (rest lst)))])

=> (cond [(empty? lst) 0]  
 [else (add1 (length (rest lst)))])  

We can use Z to make recursive functions

Given a recursive function of one variable 

(define foo  
 (λ (x) … (foo …) …))

we can construct this only using anonymous functions by way of Z  

(Z (λ (foo) (λ (x) … (foo …) …)))

Factorial  
(Z (λ (fact)  
 (λ (n)  
 (if (zero? n)  
 1  
 (* n (fact (sub1 n)))))))

Step by step

1. Write your recursive function normally with recursive calls: 

(define foo (λ (x) …))

2. Wrap the lambda in another, single-argument lambda whose argument has

the same name as your function:  

(define foo (λ (foo) (λ (x) …)))

3. Apply Z to that  

(define foo (Z (λ (foo) (λ (x) ...))))

4. Be thankful that programming language designers give us easier ways to

write recursive functions!

Imagine a version of Scheme without define or letrec, how can we write a

recursive function foo and call it on a list? In other words, how do we write  

(letrec ([foo (λ (lst) (… (foo …) …))])  
 (foo '(1 2 3)))

A. (let ([foo (Z (λ (lst)  
 (… (foo …) …))])  
 (foo '(1 2 3)))

B. (let ([foo (Z (λ (foo)  
 (λ (lst)  
 (… (foo …) …))))])  
 (foo '(1 2 3)))

C. It's not possible to write recursive functions without define or letrec in

Scheme
21

What about multi-argument functions?

We can use apply!

(define Z*  
 (λ (f)  
 ((λ (g) (f (λ args (apply (g g) args))))  
 (λ (g) (f (λ args (apply (g g) args)))))))

This is the list of arguments to our recursive function

Example: map

((Z* (λ (map)

 (λ (proc lst)

 (cond [(empty? lst) empty]

 [else (cons (proc (first lst))

 (map proc (rest lst)))]))))

 add1

 '(1 2 3 4 5))

We're applying Z* to the orange function which returns a recursive map

procedure

Then we're applying that procedure to the arguments add1 and '(1 2 3 4 5)

